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Abstract. Urban impervious surface area (UISA) and urban green space (UGS) are two core components of cities for 

characterizing urban environments. Although several global or national urban land use/cover products such as Globeland30 

and FROM-GLC are available, they cannot effectively delineate the complex intra-urban land cover components. Here we 

proposed a new approach to map fractional UISA and UGS in China using Google Earth Engine (GEE) based on multiple 

data sources. The first step is to extract the vector boundaries of urban areas from China’s Land Use/cover Dataset (CLUD). 15 

The UISA was retrieved using the logistic regression from the Landsat-derived annual maximum Normalized Difference 

Vegetation Index (NDVI). The UGS was developed through linear calibration between reference UGS from high spatial 

resolution image and the normalized NDVI. Thus, the China’s UISA and UGS fraction datasets (CLUD-Urban) at 30-meter 

resolution are generated from 2000 to 2018. The overall accuracy of national urban areas is over 92%. The root mean square 

errors of UISA and UGS fractions are 0.10 and 0.14, respectively. The datasets indicate that total urban area of China was 20 

7.10×10
4
 km

2
 in 2018, with average fractions of 70.70% for UISA and 26.54% for UGS. The UISA and UGS increased with 

unprecedented annual rates of 1,492.63 km
2
/yr and 400.43 km

2
/yr during 2000-2018. CLUD-Urban can enhance our 

understanding of urbanization impacts on ecological and urban dwellers’ environments, and can be used in such applications 

as urban planning, urban environmental studies and practices. The datasets can be downloaded from 

https://doi.org/10.5281/zenodo.3778424 (Kuang et al., 2020). 25 

1 Introduction 

The effects of rapid urbanization on environments have been witnessed around the world (Bai et al., 2018) and 

profoundly contribute to the changes in biosphere, hydrosphere and atmosphere (Seto et al., 2012; J. Wu et al., 2014; Kuang 

et al., 2018). In China, a rapid urbanization process appeared in the 21
st
 century (Xu and Min, 2013; Ma et al., 2014; Bai et 

al., 2014; Kuang, 2012; Kuang et al., 2013; Kuang et al., 2016), resulting in rapid increase in urban impervious surface area 30 

(UISA) and urban green space (UGS). This process further triggered various urban environmental problems such as urban 
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heat island and urban flooding (Haase et al., 2014; Kuang, 2011; Kuang et al., 2015; Kuang et al., 2017; Zhang et al., 2017). 

Although many green areas were constructed in Chinese cities recently, China has relatively lower UGS percentage in urban 

areas than other developed countries such as United States (Nowak and Greenfield, 2012; Kuang et al., 2014). These urban 

environmental problems triggered the urgency of developing accurate urban land-cover datasets with high spatial resolution 35 

for delineating the underlying urban environments. Along with the development of earth observation technologies, remote 

sensing has become the mainstream method for mapping UISA and monitoring its change (Weng, 2012; Wang et al., 2013; 

Lu et al., 2014). 

Various land-use products such as the GlobeLand30 (Chen et al., 2015), the University of Maryland (UMD) Land 

Cover Classification (Hansen et al., 2000), MODIS (Friedl et al., 2010), GlobCover (Bontemps et al., 2011) and FROM-40 

GLC (Gong et al., 2013) are freely available worldwide (Grekousis et al., 2015; Dong et al., 2018). These products have 

different definitions of urban areas or settlements due to their different classification systems, such as the International 

Geosphere-Biosphere Programme (IGBP) or Food and Agriculture Organization of the United Nations (FAO) (Belward, 

1996; FAO, 1997). Some urban land datasets which were constructed by supervised learning approaches were released at 

national or global scale with spatial resolution from 30 m to 1 km (Liu et al., 2018; He et al., 2019; Gong et al., 2019). 45 

Others such as built-up grid of the Global Human Settlement Layer (GHS Built) (Pesaresi et al., 2013) and Global Urban 

Footprint (GUF) (Esch et al., 2017, 2018) have been published too. Most urban land products focused on built-up land or 

urban area classification but cannot delineate urban land as a heterogeneous unit consisting of urban UISA, UGS and others 

(Chen et al., 2015). Furthermore, few urban land products provided intra-urban UISA and UGS fractions at the sub-pixel 

level. 50 

Detailed UISA dataset inside a city is required as a primary urban environmental index. Numerous studies on ISA 

mapping at the national scale mainly rely on medium-low spatial resolution remotely sensed data such as Moderate-

resolution Imaging Spectroradiometer (MODIS) and Defense Meteorological Satellite Program's Operational Linescan 

System (DMSP-OLS) (Gong et al., 2013; Zhou et al., 2014; Grekousis et al., 2015; Zhou et al., 2015; Kuang et al., 2016). 

Recently, more research is shifted to employ medium-high spatial resolution data (e.g., Landsat) to improve the products (Li 55 

et al., 2018; Liu et al., 2018; Gong et al., 2019; Gong et al., 2020; Li et al., 2020; Lin et al., 2020). The U.S. Geological 

Survey developed the National Land Cover Database (NLCD) and provided UISA fraction, percent tree canopy, land-cover 

classes and their changes with a spatial resolution of 30 m (Falcone and Homer, 2012; Yang et al., 2018). However, detailed 

intra-urban UISA and UGS dataset with 30 m spatial resolution for China at the national scale is not available yet, making it 

difficult to conduct detailed analysis of such applications as urban living environments.   60 

In reality, the urban landscape is composed of UISA (e.g., buildings, plazas, and roads), UGS and others. Previous 

studies have proven that spectral mixture analysis (SMA) provides an effective tool to retrieve the UISA and UGS fraction 

data from Landsat multispectral imagery (Lu and Weng, 2004, 2006; Peng et al. 2016; Kuang et al., 2018).   However, this 

method needs local knowledge for problem-specific analysis such as intra-urban land-cover analysis of a single city or a 

single urban agglomeration (Zhang and Weng, 2016; Xu et al., 2018). Although the globally standardized SMA can 65 
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effectively extract substrate, dark and vegetation (Small, 2013), the UISA cannot be accurately and directly extracted from 

multispectral image without post-processing considering its widely spectral variation and different meanings between UISA 

and substrate (Lu et al., 2014). Because of the high correlation between UISA and vegetation indices in the urban landscape 

(Weng et al., 2004), fractional UISA dataset can be estimated from vegetation indices using regression-based approach 

(Sexton et al., 2013; Wang et al., 2017).   70 

In this study, we developed the UISA and UGS fractions dataset with 30-m spatial resolution at national scale at five-

year intervals between 2000 and 2018. This dataset provides foundation for urban dwellers’ environments and enhance our 

understanding on the impacts of urbanization on ecological services and functions, and is also helpful in future researches 

and practices on urban planning and urban environmental sustainability. 

2 Data sources 75 

Landsat is the longest-running satellite series for Earth observation. Landsat Thematic Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) data with path ranges of 118–149 and row ranges of 23–

43 in China were selected (Table 1). Because of the cloud problem, we extended image acquisition dates within three years. 

Since available images around 2010 were relatively low, we selected China-Brazil Earth Resources Satellite (CBERS-1) and 

Huan Jing (HJ-1A/B) satellite images with similar spectral and spatial resolutions as supplements for data analysis. 80 

3. Mapping urban boundaries 

The Chinese Academy of Sciences has updated China’s national CLUD every five years since 2000 (Liu, Liu, Tian et al., 

2005; Liu, Liu, Zhuang et al., 2005; Liu et al., 2010), forming a time series of land-use/cover products at a spatial resolution 

of 30 m. This product provides six first-level classes – cropland, woodland, grassland, water body, built-up area and unused 

land. The built-up area was divided into three second-level classes – urban land, rural area, and industrial and mining land 85 

beyond cities. We extracted the vector boundaries of urban land from the CLUD’s dataset (Kuang et al., 2016). In this 

classification system, urban area is referred to as large, medium and small cities where the construction land is located in 

counties and towns. However, this dataset regards a city as a homogeneous unit, thus does not reflect intra land-cover status, 

i.e., UISA, UGS, and others. 

The underlying urban condition shows highly spatial heterogeneity (Kuang et al., 2017), which is mosaicked with UISA, 90 

UGS and others. We proposed a hierarchical-based urban land-cover classification approach, which divided urban 

landscapes into UISA, UGS, and others. UISA refers to the urban impervious surface features caused by artificial land-use 

activities, like building roofs, asphalt or cement roads, and parking lots. UGS is an important component of the green 

infrastructure of cities and provides a range of ecosystem services, as well as cultural services such as recreation and 

restoration, including parks, trees and grass. UGS provides positive influences on urban environments, but most urban 95 

classification products tend to exclude this component (Hamdi and Schayes, 2008). 
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Urban areas as a composite of UISA and UGS have different spectral characteristics in Landsat imagery, as shown in 

Fig. 1 as an example for a comparison of old cities and new cities in Suzhou. Because buildings in the old city are distributed 

compactly, their colours in Landsat images are relatively dark, while the new city is dominated by industrial lands with well-

designed urban landscapes, their colours appear bright. With prior knowledge of image classification and human-computer 100 

visual interpretation, we extracted China’s urban land by detecting the city’s boundaries from CLUD: the interpretation 

symbols of cities in Landsat images were firstly established (Fig. 1), the polygons in GIS were then used to delineate urban 

boundaries, and were created and labelled as urban area.  

4 Retrieval of UISA and UGS fractions 

4.1 Retrieval of UISA fraction 105 

The UISA and UGS were characterized as percentage of UISA or UGS in a pixel. In arid and semiarid regions, 

however, percentage of vegetation cover is seasonally dependent (Lu et al., 2008), therefore, we used multitemporal 

normalized difference vegetation index (NDVI) data in a year to generate an annual NDVI maximum image to improve the 

accuracy of vegetation characterization. As a negative correlation between NDVI and UISA fraction was found at the pixel 

level (Kuang et al., 2016), a regression model based on the relationship between NDVI and UISA fraction was established to 110 

estimate UISA fraction.  

According to the statistical results, the negative correlation between UISA fraction and NDVI value does not fit well 

in a linear regression relationship. Under the linear assumption, UISA fraction is overestimated in the low-value range and 

underestimated in the high-value range (Zhang et al., 2009). However, we found that the logistic regression model (LRM) 

can reduce the shortcomings of the linear regression model mentioned above, thus, LRM was selected for UISA fraction 115 

estimation (Walker and Duncan, 1967). In addition, the input parameters required by logistic regression—UISA 

classification data with binary value and NDVI maximum data—can be obtained from existing datasets. The major steps 

include (1) the annual NDVI maximum value and UISA classification data were retrieved from Landsat images,  (2) the 

parameters of the logistic regression model were estimated, and (3) the annual NDVI maximum value was used as input data 

to estimate the UISA fraction at the pixel level using the developed LRM, which can be expressed as: 120 

 P(𝑡) =
1

1+𝑒𝑡
  (1) 

 𝑡 = 𝑎 × (1 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥) + 𝑏 (2) 

where 𝑎 and 𝑏 represent the parameters of LRM; 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is the annual NDVI maximum value: 

 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 =    (𝑁𝐷𝑉𝐼1 𝑁𝐷𝑉𝐼    𝑁𝐷𝑉𝐼 )   (3) 

where 𝑁𝐷𝑉𝐼  is the NDVI value of the i
th

 image. Individual NDVI was calculated from Landsat image and all images were 125 

collected in Google Earth Engine (GEE) (Gorelick et al., 2017). In this study, all Landsat 5/7 images in 2000, 2005 and 2010 

and all Landsat 8 images in 2015 and 2018 were selected to calculate the NDVI maximum value in a given year. 
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Huge discrepancies in the UISA and UGS components of different cities were found because of different climate and 

geographical conditions. The UISA is often related to urban economic and geographic conditions, and the same economic 

region can be assumed to have similar UISA density. According to the Chinese economic and geographic zones, we selected 130 

28 typical cities to calibrate UISA data using the LRM model. For each city, 1,000 samples for UISA and UGS were 

randomly selected. They were used as the input for LRM to calibrate parameters (Fig. 2, Fig. 3). The average value of the 

parameters in each economic and geographic zone is obtained as a regression parameter for all cities in the same zone (Table 

2).  

4.2 Retrieval of UGS fraction 135 

According to sample plots collected from typical cities based on Chinese economic and geographic zones, the UGS 

were calibrated from the vegetation cover in urban landscapes with the following equations:  

𝑉 =
             

                
 ,       (4) 

   =  +    ,            (5) 

Where VC is the vegetation cover in the urban landscape. NDVIveg and NDVIsoil are NDVI values (the annual NDVI 140 

maximum image, see equation (3)) at pure vegetation and pure bare soils.  α and β are constant and slope in the linear 

regression.  

5 Validation of CLUDs and of UISA and UGS fractions 

The unified quality check and data integration were performed for the years of 2000, 2005, 2010, 2015 and 2018 to 

ensure the quality and consistency of the interpretation results. In the process of land-use/cover interpretation, field 145 

investigations were mainly carried out in autumn in the northern part of the country and in spring in the southern part. High 

spatial resolution images from Google Earth were used for validation (Liu et al., 2014; Zhang et al., 2014; Kuang et al., 2016; 

Ning et al., 2019). At least 2,200 points for each interval were randomly generated throughout China. Based on validation 

results, the overall accuracy of urban land or built-up area was 92–99% for each given year (Table 3) and the overall 

accuracy for urban land change was 95–97% for each period (Table 4).  150 
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Google Earth images with higher spatial resolution than Landsat images were employed for the validation of UISA and 

UGS fractions. Firstly, the 30 m × 30 m UISAs were rectified with Google Earth images. A total of 1,111 validation samples 

with a window size of 3 × 3 pixels (90 m × 90 m grids) for each sample plot were randomly acquired from 44 cities in 

different regions in China for validation (Fig. 4). Mean UISA and UGS densities in each grid were calculated. The actual 

value in the same area was obtained by visual interpretation from Google Earth images. Accuracy assessment of UISA and 155 

UGS was performed by root mean square error (RMSE) and correlation coefficient (R). The validation of UISA and UGS 

fractions in each period shows that the RMSEs were 0.09–0.12 and 0.12–0.17 respectively,, and the R values were 0.89–0.93 

and 0.85–0.89 respectively (Table 3). For the validation for change detection results at different period, we chose 741 

samples (90m×90m) within urban area for validation. We used medium relatively error (MRE) and R to examine the 

accuracy. The MRE values of UISA and UGS fractions for each period were 5.2–6.8% and 5.9–7.1% respectively (Table 4). 160 

6 Results 

We compared the vector boundaries of urban areas with the existing land-use products and found their obvious 

discrepancies because of the differences in data production, data source, resolution and definition of urban land-use types. 

The spatial resolutions of land-cover products range from 30 m to 1000 m, and their classification systems are based on 

IGBP or FAO frameworks (Belward, 1996; FAO, 1997). Figure 5 provides a comparison of a list of urban land datasets (see 165 

Table 5 for these datasets), showing that our product has better performance in delineating the detailed intra-urban land 

cover spatial patterns note: both of the GHS Built and GlobaLand 30 products only have two years). The intra-urban land-

cover is more complex than rural area. However, most urban land products cannot effectively distinguish urban and rural 

land using an automatic classification method (Fig. 5b, c, d, e). In our dataset, urban area is emphasized from the area where 

county’s or town’s government located, usually with a sufficient size of population. Because other products cannot 170 

effectively distinguish urban and rural lands, their urban areas were overestimated considerably (Fig. 5). CLUD-Urban can 

delineate intra-urban land-cover at pixel level, providing more elaborate than other products.  

China's UISA shows an increasing trend, from 2.22×10
4
 km

2
 in 2000 to 5.20×10

4
 km

2
 in 2018 (Fig. 6), similar to the 

urban expansion rates. From the perspective of the quality of dwellers’ environments, the UISA was 68.34%-71.57% in 

2000-2018, showing a higher UISA density in China’s urban area than other developed countries, like the USA (Kuang et al., 175 

2014). As shown in Fig. 6, the UISA across China is mainly clustered in the coastal and the central regions and relatively 

discrete in the western region. The pattern of "high in east and low in west" remained unchanged during the period of 2000 

and 2018. Similar to the trend of urban land area and UISA, China's UGS shows an increasing trend. The total UGS 

increased from 1.00×10
4
 km

2
 in 2000 to 1.83×10

4
 km

2
 in 2018 (Fig. 7). Looking at both UISA and UGS in urban areas, our 

results indicate a slight decrease in UGS density and increase in UISA density. The UGS was 30.77%, 29.86%, 30.31%, 180 

27.70% and 26.04%, in 2000, 2005, 2010, 2015 and 2018, respectively. As shown in Fig. 7,  UGS is mainly distributed in 

coastal, northeastern, and southwestern China. The largest increase occurred in the coastal and northeastern regions.  
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To illustrate the pattern of national urban land change, we analysed the process of urban expansion since 2000, together 

with UISA and UGS dynamics (Fig. 6, Fig. 7 and Fig. 8). The growths of UISA and UGS were obvious in main urban areas, 

like Beijing-Tianjin, Yangtze River Delta and Guangdong–Hong Kong–Macao Great Bay Area. Both UISA and UGS 185 

showed an increasing trend associated with urban expansion. High proportions of UISA and UGS were located in eastern 

China because of its good economic conditions. High proportional UISA represents buildings, roads and plazas, whereas low 

proportional UISA represents parks and greenbelts with ecological functions. This dataset can characterize differences 

among the selected cities. Some cities, like Beijing and Nanjing with well-planned urban landscapes had relatively small 

proportions of UISA (59.35% and 68.19%, respectively) and high proportions of UGS (38.61% and 30.33%, respectively) in 190 

their urban landscapes in 2018. 

7 Data availability 

All data presented in this paper are available in  https://doi.org/10.5281/zenodo.3778424 (Kuang et al., 2020). This 

dataset covers five years (i.e., 2000, 2005, 2010 2015 and 2018) with a spatial resolution of 30 m. Detailed metadata 

description is provided, including contact information. 195 

8 Conclusion 

The CLUD-Urban – China’s UISA and UGS fraction datasets with 30-m spatial resolution was generated using multiple 

data sources. CLUD-Urban provided detailed delineation in UISA and UGS components for 2000, 2005, 2010, 2015 and 

2018 in China. The novelty of this dataset, comparing to other products, is that it takes cities as heterogeneous units at the 

pixel level, which is consisted of UISA, UGS, and others. The accuracy of the CLUD-Urban dataset is 91.98% using the 200 

integrated approach of visual interpretation and prior knowledge. The RMSEs of UISA and UGS fractions are 0.10 and 0.14, 

respectively. Results from the analysis of urban areas, including UISA and UGS, show large regional differences in China. 

CLUD-Urban provides fundamental data sources for examining urban environment issues and for delineating intra-urban 

structure or urban landscape at the national scale. 
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Table 1: The multitemporal data series used in this research 

Year Path Row Image period  Sensor Spatial resolution (m) 

2000 

118–149 23–43 

1999–2001 TM, ETM+ 30 

2005 2004–2006 TM 30 

2010 2009–2011 TM, HJ-1, CBERS -1 30 

2015 2014–2016 OLI 30 

2018 2017-2019 OLI 30 

 Note: TM, Landsat Thematic Mapper; ETM+, Landsat Enhanced Thematic Mapper Plus; HJ, Huan Jing; 

CBERS, China Brazil Earth Resources Satellite; OLI, Landsat 8 Operational Land Imager. 

 400 

Table 2: Parameters of the logistic regression models based on selected cities in China. 

City a b Score 

Changsha 0.013  -6.353  0.866  

Hefei 0.011  -6.148  0.855  

Taiyuan 0.014  -7.974  0.873  

Wuhan 0.008  -4.425  0.802  

Central region 0.012  -6.225  0.849  

Tianjin 0.007  -3.946  0.780  

Haikou 0.012  -6.357  0.897  

Jinan 0.015  -9.149  0.879  

Hangzhou 0.010  -5.032  0.887  

Nanjing 0.006  -3.503  0.768  

Shenzhen 0.011  -5.891  0.873  

Qingdao 0.013  -8.399  0.845  

Xiamen 0.009  -5.224  0.833  

Ningbo 0.010  -4.988  0.862  

Foshan 0.007  -3.957  0.757  

Dongguan 0.006  -3.904  0.792  

Beijing 0.010  -5.311  0.876  

Chengdu 0.012  -6.669  0.834  

Shanghai 0.008  -4.362  0.784  

Coastal region 0.010  -5.478  0.833  

Changchun 0.013  -6.054  0.893  

Harbin 0.012  -5.569  0.939  

Shenyang 0.011  -5.370  0.848  

Dalian 0.012  -7.240  0.881  

Northeastern region 0.012  -6.058  0.890  

Guiyang 0.014  -7.902  0.884  

Kunming 0.013  -7.074  0.878  

Nanning 0.015  -0.722  0.913  
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City a b Score 

Xian 0.014  -7.571  0.911  

Lanzhou 0.017  -12.357  0.827  

Urumqi 0.003  -2.058  0.686  

Western region 0.013  -6.281  0.850  

Note: a, b are parameters of LRM 

 

Table 3: Accuracy assessments for the extracted urban land and UISA, UGS fractions. 

Year 

Urban land UISA UGS 

Overall 
accuracy 

RMSE R RMSE R 

2000 98.92% 0.12 0.89 0.17 0.85 

2005 97.01% 0.11 0.89 0.17 0.87 

2010 93.99% 0.10 0.91 0.16 0.87 

2015 91.98% 0.09 0.93 0.12 0.89 

2018 95.49% 0.10 0.91 0.17 0.87 

Note: The validations of urban land were obtained from Zhang et al. (2014) and Ning et al. (2019) 

 405 

Table 4: Accuracy assessments for urban land and UISA, UGS changes. 

Period Overall accuracy of urban land MRE of UISA MRE of UGS 

2000-2005 97.01% 5.69% 7.09% 

2005-2010 95.93% 5.33% 5.86% 

2010-2015 94.99% 6.83% 6.68% 

2015-2018 95.23% 5.21% 5.98% 

MRE, medium relatively error 

 

Table 5: A summary of existing urban land products. 

Name 
Spatial 

resolution 
Abbreviation Method Reference 

Chinese Urban Land use/cover Dataset 30m CLUD-Urban Visual interpretation and machine learning - 

Land Cover from Moderate-resolution Imaging 
Spectroradiometer 

500m MODIS LC Decision tree classification (Friedl et al., 2010) 

European Space Agency global land-cover data 300m ESA LC 
Unsupervised classification and change 

detection 
(Bontemps et al., 2011) 

Built-up grid of the Global Human Settlement Layer 30m GHS Built Symbolic machine learning (Pesaresi et al., 2013) 

Global Land Cover at 30m resolution 30m GlobaLand30 
Pixel-Object Knowledge (POK)-based 

classification 
(Chen et al., 2015) 

Multi-temporal Global Impervious Surface 30m MGIS Normalized urban areas composite index (Liu et al., 2018) 

Annual maps of global artificial impervious area 30m GAIA “Exclusion/Inclusion” approach (Gong et al., 2020) 

 

 410 
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Figure 1: Landsat image and digital urban boundary (in red) of Suzhou, China (December 29, 2014, Landsat 8 OLI, composite of 

Shortwave Infrared, Near-Infrared and Red bands). (The Landsat image is provided by Geospatial Data Cloud site, Computer 

Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn))  415 
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Figure 2: Spatial distribution of 28 sample cities located in different regions of China. (The administrative boundaries were 

provided by National Geomatics Center of China (http://www.webmap.cn)) 
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Figure 3: Relationships between UISAs and annual NDVI maximum values in four sample cities in China. 420 
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Figure 4: Distribution of 44 validation cities and points in China. (The image is provided by Geospatial Data Cloud site, Computer 

Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn). The administrative boundaries were 

provided by National Geomatics Center of China (http://www.webmap.cn)) 
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 425 

Figure 5: A comparison of urban land classification results in Beijing among different urban land products (The Landsat image 

is provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences 

(http://www.gscloud.cn)) 

 

 430 
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Figure 6: Spatial distribution of impervious surface area (ISA) in China, 2000–2018, at five-year intervals. (The administrative 

boundaries were provided by National Geomatics Center of China (http://www.webmap.cn)) 
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Figure 7: Spatial distribution of urban green space (UGS) in China, 2000–2018 at five-year intervals. (The administrative 435 

boundaries were provided by National Geomatics Center of China (http://www.webmap.cn)) 
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Figure 8: A comparison of urban land cover fractions among typical cities in China. 440 
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